4.1 FEM 仿真实例——MagicT

4.1.1 问题描述

本例所要展示的器件如图 4-2 所示,通过查看远场图表,将介绍 Rainbow-FEM3D 模块的具体仿真流程,包括建模、求解、后处理等。

图 4-2 MagicT 模型

4.1.2 系统启动

4.1.2.1 从开始菜单启动

点击操作系统菜单 Start→Rainbow Simulation Technologes→Rainbow Studio,在弹出的产品选择对话框中选择产品模块,如图 4-3 所示,启动 Rainbow-FEM3D 模块 。

♣ 产品选择 - RainbowStudio 9.0	?	×
选择产品: Rainbow Studio企业版 Rainbow Studio专业版 Rainbow Studio标准版 Rainbow Viewer专业版	Ħ	目请
 选择功能: 弹跳射线追踪(SBR) 电磁导航仿真系统(ENS) 不行真(FEM3D) 边界元仿真(BEM3D) 三维版图设计(Layout3D) 三维准静态仿真(Q3D) 	Į	又消
□ 设置为缺省选择	面	畒

图 4-3 启动 Rainbow-FEM3D 模块

4.1.2.2 创建文档与设计

如图 4-4 所示选择菜单文件→新建工程→Studio 工程与 FEM(Modal)模型 来创建新的文档,其中包含一个缺省的 FEM 的设计。

++ 1/4				
×1+ 建工程		₩	Studio工程	L
		Ø	Studio工程与FEM(Modal)模型	
	C+~1+0	٩	Studio工程与FEM(Terminal)模型	
	0011.0	٩	Studio工程与FEM(Eigen)模型	
アサイギタ		٩	Studio工程与HFSS文档	
			EMViewer工程	
		<u>6</u>	FEMAnnular.rbs	
		7	BEMA1mond.rbs	

图 4-4 创建 FEM 文档与设计

在弹出的对话框中修改模型的名称为MagicT,如图4-5所示。

<mark>岩</mark> Rainbo	?	×
请输入新的名称。	:	
MagicT		
OK	Car	ncel

图4-5 修改设计名称

点击菜单 File→Save 或者 Ctrl+S 来保存文档,将文档保存为 FEMMagicT.rbs 文件。保存后的工程树如图 4-6 所示。

图 4-6 保存文档

- 4.1.3 创建几何模型
- 4.1.3.1 创建长方体

点击菜单**几何→长方体**创建长方体如图 4-7 所示,在模型视图窗口中进行 如图 4-8 和图 4-9 所示的操作,用鼠标操作创建长方体。

图 4-7 创建长方体

图 4-8 用鼠标拉出长方体底面

图 4-9 用鼠

标拉出长方体高度

双击创建命令 CreateBox,可以在属性修改对话框中修改长方体的属性, 根据图 4-10 所示修改长方体的参数。

🐻 属性 ·	- R	?	\times
命令	Create	Box	
坐标系 ┌ 位置 -	Global		•
X -25	5		
Y -10 Z 0)		
长度	50		
宽度	20		
高度	75		
命令			
取消		碵	ril 🛛

图 4-10 修改长方体参数

- X: -25
- Y: -10
- Z: 0

创建完成后的几何模型如图 4-11 所示。

长度:50

宽度:20

高度:75

图 4-11 修改完成后的几何模型

4.1.3.2 修改长方体

选择创建好的长方体对象 Box1,在几何菜单中选择旋转复制如图 4-12 所

图 4-12 对 Box1 进行旋转复制

点击**旋转**按钮之后在弹出的窗口中修改旋转复制的参数,按照图 4-13 所示 修改参数。

图 4-13 修改旋转复制的参数

坐标轴:X轴

角度(deg): 90

总数:2

点击确认完成复制,再选择刚复制的对象 Box1_1,按照上述操作进行旋转 复制操作,按照图 4-14 所示修改参数。

 評価
 旅转复制 - Rai...
 ?
 ×

 坐标轴:
 ○
 X轴
 ○
 Y轴
 ○
 Z轴

 角度(deg):
 90

 总数:
 3
 3

 ●
 关联到原始对象

图 4-14 修改复制参数

坐标轴: Z 轴

角度(deg): 90

总数:3

完成旋转复制操作后的几何模型如图 4-15 所示。

图 4-15 旋转复制后的几何模型

选择 Box1、Box1_1、Box1_1_1、Box1_1_2 几何对象,在几何菜单中选择 合并,如图 4-16 所示。

几何	物理	分析	ī 翁	吉果显示	视图) 窗[コ 帮助	w												א ^ב ±	i • (i) – 🗇
xt(UI)	+ Z	л 2 2	\/ © €	f(x) , 解析	00	♦	f[xy] 解析		•	前 球体	(1) 252	 √ √	 ○ 平移 □ 旋转 ○ 【镜像 	缩放	□□ 平移 □□ 旋转 □□ 旋转 □□ 旋转	合并 裁剪 相交	▼ 截交 ▼	(S) (S) (D)	 	分析对象	日本 与入网格文件
* @ * M	坐标系 Ţ 亩 - ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	後 ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★	num Box1 D C Box1 Box1 Box1	reateBoo uplicate 1 1_1 1_2	: Rotati	on	Z Y X														

图 4-16 合并几何对象

合并对象之后双击 Box1,在几何窗口中修改透明度为 0.5,如图所 4-17 所

示。

🟪 几何 - RainbowStudi ? 🛛 🗙								
_ 几何 ——								
名称:	Box1							
颜色:	[91, 170, 237]							
求解内部:	\checkmark							
模式几何:								
材料:	vacuum 💌							
│模块:	<u>~</u>							
万问:	G1nba1							
透明度:	0.50							
显示模式:	Inherit.							
缺省	取消 确认							

图 4-17 修改透明度

4.1.4 仿真模型设置

接下来需要对几何模型设置各种相关的物理特性,包括模型的边界条件, 网格参数等。

4.1.4.1 添加端口激励

创建几何模型后,用户可以为几何模型设置各种端口激励方式和参数。在 工程管理树中,Rainbow系列软件把这些新增的端口激励添加到工程树的激励 端口目录下。

将选择模式修改为面选模式,如图 4-18 所示。

图 4-18 修改选择模式为面选模式

选择几何模型的顶面,为其添加波端口,如图 4-19 所示。

图 4-19 添加波端口

在弹出的波端口设置对话框点击确认按钮完成设置,如图 4-20 所示。

濐 波端口激励 - Rainbow	?	×
名称: P1 ┌端口归──化: ────		🔲 启用
 不要重新归一化 重新归一化所有端口 50 		
取消		确认

图 4-20 确认波端口设置

接下来打开**激励端口**目录下的 P1,可以找到刚添加的波端口 1,如图 4-21 所示。

图 4-21 打开激励端口目录

双击1打开激励积分线窗口,点击**重置→V-**,修改积分线如图 4-22 所示。

🎦 激励积分线 - RainbowSt ? 🛛 🗙									
名称: 1 ┌参考阻抗:									
阻抗: 50			0						
 积分线: 起始: 0,10,75 			mm						
终点: 0,-10,76 编辑	重置	交	m						
缺省	V+ V- U+	7	 确认						

图 4-22 修改积分线

选择几何模型左侧的面,按照同样方式为其添加波端口,如图 4-23 所示。

在弹出的波端口设置对话框点击确认按钮完成设置,如图 4-24 所示。

ζ_x

濐 波端口激励 - Rainbow	?	\times
名称: P2 端口归一化: ● 不要重新归一化 ● 重新归一化所有端口 50		启用
── 消除嵌入		
取消		确认

图 4-24 确认波端口设置

接下来打开**激励端口**目录下的 P2,可以找到刚添加的波端口 1,如图 4-25 所示。

图 4-25 打开激励端口目录

双击1打开激励积分线窗口,点击**重置→V-**,修改积分线如图 4-26 所示。

🎦 激励	积分线 -	Rainbow	/St	?	\times
名称: 1 ┌参考阻打	抗. ——				
阻抗:	50				0
- 积分线:	0 -75 10				
_{起》} 终点:	0, -75, -1	, LO			mm
编	辑	重置	•	交换	
		V+			
缺省		U+		确认	
		U-			

图 4-26 修改积分线

选择几何模型前侧的面,按照同样方式为其添加波端口,如图 4-27 所示。

在弹出的波端口设置对话框点击确认按钮完成设置,如图 4-28 所示。

🎦 波端口激励 - F	Rainbow	?	\times
名称: P3 化:			🔳 启用
 不要重新归一(重新归一化所有 	七 有端口 50		0
消除嵌入			
	取消	7	确认

图 4-28 确认波端口设置

接下来打开**激励端口**目录下的 P3,可以找到刚添加的波端口 1,如图 4-29 所示。

图 4-29 打开激励端口目录

双击1打开激励积分线窗口,点击**重置→V-**,修改积分线如图 4-30 所示。

🔒 激励积分线 - RainbowSt ? 🛛 🗙										
名称: 1										
「参考阻」	抗: ——									
阻抗:	50				0					
- 积分线:										
起始:	75, -7. 10)543e-15,	10		nm					
终点:	75, -7. 10)543e-15,	-10		mm					
编	辑	重置	•	交	换					
		V+								
V										
缺省	Ì	U+		貧	角认					
		U-								

图 4-30 修改积分线

使用 Alt+鼠标左键旋转几何模型,选择几何模型右侧的面,按照同样方式 为其添加波端口,如图 4-31 所示。

图 4-31 添加波端口

在弹出的波端口设置对话框点击确认按钮完成设置,如图 4-32 所示。

🎦 波端口激励 -	Rainbow	?	\times
名称: P4 			🔳 启用
 不要重新归一 重新归一化府 	-化 有端口 50		0
🔲 消除嵌入			
	取消		确认

图 4-32 确认波端口设置

接下来打开**激励端口**目录下的 P4,可以找到刚添加的波端口 1,如图 4-33 所示。

图 4-33 打开激励端口目录

_ . .

双击1打开激励积分线窗口,点击**重置→V-**,修改积分线如图 4-34 所示。

▲ 激励积分线 - RainbowSt ? ×									
名称: 1									
参考阻抗	抗: ——								
阻抗:	抗: 50								
└ 积分线:									
起始:	1.06581@	1.06581e-14,75,10							
终点:	1.06581@	1.06581e-14,75,-10							
编	辑	重置	•	交换					
		V+							
		V-							
缺省	Ê	U+		确认					
/		U-							

图 4-34 修改积分线

4.1.5 仿真求解

4.1.5.1 设置仿真求解器

下一步,用户需要设置为模型分析设置求解器所需要的仿真频率及其选项,以及可能的频率扫描范围。在工程管理树中,Rainbow系列软件把这些新增的求解器参数和频率扫描范围添加到设计的**求解方案**目录下。选择菜单**分析 →添加求解方案**,如图 4-35 所示。并在如图 4-36 所示的求解器设置对话框中 修改求解器参数。

图 4-35 添加求解方案操作

➡ 求解器设置 - RainbowStudio 9.0 ? ×

常规 自适应 常规		
名称: FEM1		☑ 启用
频率: 4		GHz
└─────────────────────────────		
数据精度:	Single Precision	T
基函数介数:	First Order	T
📃 启用迭代求解		
相对剩余:	0.001	
最大迭代步幅:	0.001	
缺省	取消	确认

➡求解器设置 - RainbowStudio 9.0 ? ×

常规 自适应	
_ 迭代参数:	
每步最大细化单元数目比例:	0.3
Maximum Number of Passes:	6
● 最大能量差值(DeltaS):	0.02
💿 启用收敛矩阵:	设置幅度/相位
缺省	取消 确认

图 4-36 设置求解器

频率: 4 GHz

数据精度: Single Precision 基函数介数: First Order 每步最大细化单元数目比例: 0.3 Maximum Number of Passes: 6 最大能量差值(Deltas): 0.02

4.1.5.2 添加扫频方案

在**求解方案**目录下打开刚添加的 FEM1,在其右键菜单中选择扫频方案→ 添加扫频方案,如图 4-37 所示,按照图 4-38 所示设置扫频方案。

🚺 求解	方案						
	8	删除		De1			
	0	属性		Shift+P			
🥪 场仿:	\checkmark	标签		Shift+T			
🐻 结果	\otimes	启用/禁用					
	₿	剖分网格					
	S	求解					
	~	清除数据					
		查看数据					
		仿真迭代数	据				
	<u>^=</u>	仿真日志					
		扫频方案		•	-	添加扫频方案	
						Ami	
						王加加	

图 4-37 添加扫频方案

🎦 仿真扫描	频率方案 - Rainbo	? ×
- 常规 - 夕称・ FreeS	ween 1	
- 扫描	ncom 1	
扫描类型:	Interpolating 💌	选项
┌频率: ───		
选择方法:	Linear by number 💌	列举
起始:	3. 4	GHz
终止:	4	GHz
数目:	1001	
缺省	取消	确认

图 4-38 设置扫频方案

扫描类型: Interpolating

选择方法: Liner by

number

起始: 3.4 GHz

数目:1001

4.1.5.3 求解

完成上述任务后,用户可以选择菜单**分析→验证设计**如图 4-39 所示,验证 模型设置是否完整,点击验证设计后会出现如图 4-40 所示的验证有效性界面。

文件	主页	工程	设计	几何 物理	1 分析	结果显示	视图	窗口	帮助			
验证设计	上 求解i	ورال ورال	正 查看数据	A= 设计日志	清除数据	添加求解	了了了。	副分网格	S 求解	直看数据	《 》 清除数据	人 「 方真日志
					图 4-39	验证设	计操作	作				
				A	验证模型	<u>I</u> - R ?)	×				
					Geometr Materia Boundar Solutio Pattern Mesh Termina	y 1 y and Excit n 1	ation					
							关闭					

图 4-40 验证仿真模型有效性

下一步,选择菜单**分析→求解设计**启动仿真求解器分析模型如图 4-41 所示。用户可以利用任务显示面板来查看求解过程,包括进度和其它日志信息, 如图 4-42 所示。

图 4-42 查看仿真任务进度信息

4.1.6 结果显示

4.1.6.1 近场电流显示

仿真结束后,用户可以查看几何模型上的电流、电场、磁场等分布与流动 情况。在工程管理树中,Rainbow系列软件把这些新增的结果显示添加到设计 的**场仿真结果**目录下。

几何 物理 分析 结果显示 视图 窗口 帮助 א^ג ±ש י**ו) – ס** × 谷理
 体 😚 主体周期 💾 场域强度 📄 切换激励源显 PML 工作优先级 Ξ ∅∅ **†** _₩ \mathbf{C} \bigotimes \$ 1 🚮 从属周期 ₴ 差分端口 在 → + 磁 坐标系 = 八所 = ① 实体 = 餐 vacuum = 餐 bool 管理 初始网格 曲面近似 边 🛆 体 球面 PML向导 波端口 集总端口 平面波 网格 添加近场显示 远场 1二 重新排序 ζ_x

首先在物理菜单下单击切换激励源显示,如图 4-43 所示。

图 4-43 切换激励源显示操作

在切换场域激励源窗口选择 P1 激励源,如图 4-44 所示。

🎦 切换场域激励源 - Rainb	?	×
_ 数据源:		
Source/Index /	Name	
e- 🔽 🎦 P1		
	1	
	1	
e- 🔲 🎦 P3	_	_
	1	_
	1	
缺省取消	确	认

图 4-44 选择 P1 激励源

选择 Box1 对象,在其右键菜单中选择**添加近场显示→E 电场模**,如图 4-45 所示。

图 4-45 添加 E 电场模

在弹出的近场显示窗口中,按照图 4-46 修改参数。

器近场显示 - RainbowStudio 9.0 ? ×										
名称: EMag1										
┌方案 变量										
方案: FEM1:FinalPass		•								
频率: 4		•								
相位: 0										
缺省 取消	۵ T	甸认								

图 4-46 修改近场显示参数

近场电流显示结果如图 4-47 所示。

× ×

4.1.6.2 S参数图表显示

仿真结束后,系统可以创建各种形式的视图,包括线图,曲面和极坐标显示,天线辐射图等。在工程管理树中,Rainbow系列软件把这些新增的视图显示添加到设计的结果显示目录下。选择菜单结果显示→SYZ 参数图表→2 维矩形线图,如图 4-48 所示,并在如图 4-49 所示的控制对话框中输入如下控制参数来添加 S 参数结果。

图 4-48 生成二维矩阵线图

🖰 Rainbow图表生成器 - 1D Rect Chart - RainbowStudio 9.0

 \times

?

致据源: 一			「结」	果:				
参数扫描:	Nu11	•	类	9J:	项:	函数:		
方案:	A11	•	SY VS	Z-Parameter WR	S Y	PhaseRad PhaseRadCont		
[1] FEM1:A [3] FEM1:F [6] FEM1:F	daptPass:Modal inalPass:Modal regSweepl:Modal				Ż Q L C	Rea1 dB10 dB10Normalize dB20 dB20Normalize		
			一数排	居过滤:				
			X: Frequency 💌 All					
				Quantity $ abla$		Value 🛛		
			1	In	P1:1			
			2	Out	A11			

图 4-49 设置图表参数

方案: [6]

项: S

类别: SYZ-Parameter

函数: dB20

In: P1:1

Out: All

S参数图表结果如图 4-50 所示。

图 4-50 S 参数结果显示

S参数相位图设置如图 4-51 所示。

<mark>우</mark> Rainbow图表生成器 - 1D Rect Chart - RainbowStudio 9.0 ?										
数据源: 一 参数扫描: 方案: [1] FEM1: [3] FEM1:	Nill All AdaptPass:Modal FinalPass:Modal	¥ ¥	- 结』 类別 SY VS	果: 列: Z-Parameter WR	项: S Y Z Q	函数: PhaseR PhaseR Real dB10	id idCont			
TOJ PEMI.	1293w2991.MUU41		- 数i X:	居过滤: Frequency _ A1:		dB 10Noi dB20 dB20Noi	malize	·		
			1	Quantity V	P1:1	Value				
			2	Out	P2:1;P4:1					
						新增图表	¥	-iii		

图 4-51 S 参数相位图设置

方案: [6]

项: S

In: P1:1

Out: P2:1; P4:1

类别: SYZ-Parameter

函数: PhaseRadCont

S参数相位图结果如图 4-52 所示。

图 4-52 S 参数相位图结果